

Rheology of the Quark Gluon Plasma

Measurement of the QGP Shear Viscosity with pt pt Correlations in Heavy Ion Collisions

Claude A. Pruneau and Monika Sharma, for the STAR Collaboration

- Is the QGP a Perfect Fluid ?
- New Technique/Observable to estimate the viscosity
- Modeling with EPOS, AMPT, HIJING, and SPHERIO
- Measurement in Au + Au at 200 GeV

Acknowledgements:

Thanks to S. Gavin, K. Werner for many discussions

Thanks to A. Timmins for providing AMPT, EPOS events and J. Takahashi for providing NeXus/Spherio events

Control Chem Pleases of QCD Control Chem Pleases Control Chem Pl

Is the sQGP a Perfect Fluid?

- Superfluid Helium
- Ultra Cold Gasses (few nK)

Conjectured low bound of shear viscosity/entropy:

Supersymmetric Yang Mill Theory (Ads/CFT duality Kovtun, Son, & Starinets, PRL94(2005)

$$\frac{\eta}{\hbar s} \ge \frac{1}{4\pi}$$

Quark Gluon Plasma
 T~200 MeV~10¹² K
 Temperature of early universe at ~1 micro-sec

1/S dN/dy

Const. Chess Pleases Const. Chess Pleases

Is the sQGP a Perfect Fluid?

- Superfluid Helium
- Ultra Cold Gasses (few nK)

Quark Gluon Plasma
 T~200 MeV~10¹² K
 Temperature of early universe at ~1 micro-sec

Can we measure the viscosity by other means at RHIC?

viscosity/entropy:

Supersymmetric Yang Mill Theory (Ads/CFT duality Kovtun, Son, & Starinets, PRL94(2005)

$$\frac{\eta}{\hbar s} \ge \frac{1}{4\pi}$$

Comp. Cheen Pleases of QCD Comp. Cheen Pleases Co

Is the sQGP a Perfect Fluid?

- Superfluid Helium
- Ultra Cold Gasses (few nK)

Quark Gluon Plasma
 T~200 MeV~10¹² K
 Temperature of early universe at ~1 micro-sec

Can we measure the viscosity by other means at RHIC?

Yes: Use ptpt 2-particle correlations

Kovtun, Son, & Starinets, PRL94(2005) $\frac{\eta}{2} \ge \frac{1}{2}$

Rheometry: Measurement of Shear Viscosity

Stress vs Deformation

$$\tau = \eta \frac{du}{dy}$$

- Density (kg/m³):
- Relation to the Mean Free Path (m):
- $v = \frac{1}{2}\bar{u}\lambda$
- $T_{yx} = -\eta \frac{dv_x}{dy}$

• Stress energy tensor:

 $Re = \frac{3}{4} \frac{\tau_o Ts}{\eta}$

Effective Reynolds number:

Measurement of viscosity based on pt pt Correlations

Gavin and Abdel-Aziz, nucl-th/0606061 (2006)

- Viscous friction
 - Arises as fluid elements flow past each other thereby reducing their relative velocity: damping of radial flow fluctuations.
 - Viscous friction changes the radial momentum current of the fluid
 - Reduces fluctuations, distributes excess momentum density over the collision volume: broadens the rapidity profile of fluctuations
- Width of momentum correlation grows with diffusion time (system lifetime) relative to its original/initial width

NEAR SIDE: Fluid Cells Viscous Drag damps their relative motion and broadens correlations

$$C(\Delta \eta) = \langle p_{t,1} p_{t,2} \rangle - \langle p_t \rangle^2$$

 $\sigma^2 = \sigma_o^2 + 2\Delta V(\tau_f)$

$$\Delta V(\tau) \equiv \left\langle \left(\eta - \left\langle \eta \right\rangle \right)^2 \right\rangle = \frac{2v}{\tau_o} \left(1 - \frac{\tau_o}{\tau} \right)$$

$$v = \frac{\eta}{T_c s}$$

This work: Differential pt pt Correlations

$$C(\Delta \eta, \Delta \varphi) = \frac{\left\langle \sum_{i=1}^{n_1} \sum_{j \neq i=1}^{n_2} p_{t,i} p_{t,j} \right\rangle}{\left\langle n_1 \right\rangle \left\langle n_2 \right\rangle} - \left\langle p_{t,1} \right\rangle \left\langle p_{t,2} \right\rangle \qquad \Delta \varphi = \varphi_1 - \varphi_2$$

Inclusive average pt:
$$\langle p_{t,i} \rangle (\eta_i, \varphi_i) = \langle \sum_{k=1}^{n_1} p_{t,k} \rangle / \langle n_i \rangle$$

Transverse momentum of particles in bin i: $p_{t,i}$

Number of particles in bin i: $n_i \equiv n_i (\eta_i, \varphi_i)$, i = 1, 2

Broadening:
$$\sigma_c^2 \approx \sigma_0^2 + \sigma_{viscous}^2$$

$$\sigma_{viscous}^2 = \frac{4v}{\tau_o} \left(1 - \frac{\tau_o}{\tau} \right)$$

Theoretical/Physics Caveats

- The system temperature, viscosity, and Reynolds# vary through the lifetime of the collision system.
 - Measurement yields time averaged quantities
- Freeze out times from other data + model
- Other effects may contribute to the longitudinal shape of the correlation function
 - Decays, thermal broadening, jets, radial flow, CGC, etc
 - Jet expected to have minor impact in the momentum range considered in this analysis.
 - Diffusion expected to dominate the broadening (see next few slides)
- Detailed interpretation of the measurements requires collision models that provide comprehensive understanding of HI data.

Dynamical Effects (1): Resonance Decays

• An increase in system temperature and/or radial flow causes kinematical focusing of the decay products: *narrowing of the correlation function*.

parent at rest

low temperature or radial velocity

medium temperature or radial velocity

high temperature or radial velocity

 Note however that re-scattering after decay implies causes thermal diffusion, and correlation broadening. --- needs modeling to properly assess its impact...

Dynamical Effects (2): Radial Flow

M. Sharma & C. A. Pruneau, Phys. Rev. C 79 (2009) 024905 for more details.

- Simulation based on PYTHIA p+p collisions at $\sqrt{s} = 200~GeV$
- Track kinematic cuts: $0.2 < p_T < 2.0 \; \mathrm{GeV/c}$ and $|\eta| < 1$

- Near-side kinematic focusing, formation of ridge-like structure with v/c>0
- Different shapes
- Narrowing of near side peak
- S. A. Voloshin, arXiv:nucl-th/0312065; C. Pruneau, et al., Nuclear. Phys. A802, 107 (2008)

Dynamical Effects (3): Core vs Corona

C. A. Pruneau, RHIC Users Meeting, June 7th, 2010.

Dynamical Effects (4): AMPT (String Melting)

Au+Au 200 GeV

Dynamical Effects (5): Initial Fluctuations (Nexus+Spherio)

J. Takahashi, et al., PRL103, 242301 (2009)

Nexus: Fluctuating Initial Conditions; Spherio: 3D Hydro

Dynamical Effects (5): Initial Fluctuations (Nexus+Spherio)

Nexus: Fluctuating Initial Conditions; Spherio: 3D Hydro

Preliminary

C. A. Pruneau, RHIC Users Meeting, June 7th, 2010.

STAR Analysis: pt pt Correlations

- Run 4 Au + Au sqrt(s_{NN}) = 200 GeV,
 8 M events, Minimum Bias Trigger
- Measure C and R₂ Correlation
 Functions (only showing C here)
- Measure Centrality Dependence vs N_{part} based on Multiplicity in $|\eta| < 1$
- C and R₂ measured in
 - 2.5 cm z-vertex bins in range |z|<25 cm
 - Reverse/Forward magnetic field
 - Weighted average.
- Particles Kinematic Range ("Bulk" Particles)

$$\eta$$
 < 1; 0.2 < p_t < 2 GeV

- Standard STAR Track quality cuts.
- Merging corrections

$$R_{2}(\Delta \eta, \Delta \varphi) = \frac{\left\langle n_{pairs}(\Delta \eta, \Delta \varphi) \right\rangle}{\left\langle n(\eta_{1}, \varphi_{1}) \right\rangle \left\langle n(\eta_{2}, \varphi_{2}) \right\rangle} - 1$$

$$C(\Delta \eta, \Delta \varphi) = \frac{\left\langle \sum_{i=1}^{n_1} \sum_{j \neq i=1}^{n_2} p_{t,i} p_{t,i} \right\rangle}{\left\langle n_1 \right\rangle \left\langle n_2 \right\rangle} - \left\langle p_{t,1} \right\rangle \left\langle p_{t,2} \right\rangle$$

Results: $C(\Delta \eta, \Delta \varphi)$

Results: $C(\Delta \eta, \Delta \varphi)$

- Peripheral:
 - "Narrow" near-side peak; broad ($\Delta \eta$) away side elongated structure.
- Mid-Central:
 - Strong flow-like signal (v2); broadening of near-side peak at $\Delta \eta \approx \Delta \phi \approx 0$
- Central:
 - Further broadening of near-side peak and ridge structure

NEAR SIDE: Fluid Cells
Viscous Drag damps
their relative motion and
broadens correlations

- Correlation Function is not Gaussian
- Characterize width as RMS of the distribution above "pedestal"
- Determine pedestal (offset) based on fit of the line shape $b + a_n \exp(-\Delta \eta / 2\sigma_n^2) + a_w \exp(-\Delta \eta / 2\sigma_w^2)$
- Subtract offset; Set $\Delta \eta = 0$ point equal to neighboring points in 0-5%; Calculate RMS from data, but include $|\Delta \eta| > 2$ extrapolation from fit.

Results: $C(\Delta \eta, |\Delta \varphi| < 1)$

Systematic Errors:

- Physics Backgrounds or Dynamical Effects
 - Contributions from non-primary tracks (e.g. weak decays): negligible
 - Contributions from photon conversions: negligible
 - Broadening vs N_{part} weakest at low N_{part} where radial flow grows fastest.
 - Radial flow induced narrowing, etc.
- Observable is robust to first order but ...
 - pt efficiency dependence
 - z-vertex bin and field direction dependencies
 - TPC occupancy
 - Offset determination and extrapolation to $|\Delta \eta| > 2$
- Evaluate sys. errors based on width differences between forward vs. reverse fields, z-vertex dependence.

Shear Viscosity/Entropy:

Based on Gavin and Abdel-Aziz, Phys.Rev.Lett. 97 (2006) 162302; nucl-th/0606061 (2006)

Viscous broadening:
$$\sigma_{viscous}^2 = \frac{4v}{\tau_o} \left(1 - \frac{\tau_o}{\tau} \right)$$
 $v = \frac{\eta}{T_c s}$

Measured broadening: $RMS:0.55 \rightarrow 0.94$ $\Delta \sigma^2 \simeq \sigma_{viscous}^2 = 0.58 \pm 0.28$

Assume Temperature: $T_c = 170 \text{ MeV}$

Formation Time (th. syst.): $\tau_o = 1_{-0.4}^{+0.5}$

Freeze-out Time (central): $\tau = 10 - 20$ fm/c Range defines theory systematic errors

Shear Viscosity/Entropy: $\eta/s = 0.14 \pm 0.02 \text{(stat)} \pm 0.06 \text{(meas syst.)}$

 ± 0.14 (theory syst.)

Shear Viscosity/Entropy - Upper limit: $\eta/s^{\text{max}} = 0.2 + 0.14$ (theory syst.)

Summary

- Goal: Measurement of shear viscosity (per unit entropy) based on new observable, C, in Au + Au collisions at 200 GeV.
 - $C(\Delta \eta)$ expected to broaden with increasing system lifetime, i.e. increasing large N_{part} (central collisions).
- Considered various dynamical effects/models that contribute to the structure of C.
 - Expect viscous diffusion to dominate correlation broadening.
- Measured $C(\Delta \eta, \Delta \varphi)$ vs collision centrality.
 - Observed changes vs centrality qualitatively similar those observed for other correlation functions.
 - Significant near-side peak broadening.
- Shear Viscosity/Entropy: $\eta/s = 0.14 \pm 0.02 \text{(stat)} \pm 0.06 \text{(meas syst.)}$
 - Upper limit:

±0.14(theory syst.)

$$\eta/s^{\text{max}} = 0.2 + 0.14 \text{(theory syst.)}$$

Extra Slide(s)

Experimental Caveat: Observable Robustness(?)

Study with PYTHIA, p+p collisions at $\sqrt{s} = 200$ GeV

Twelve fold angular efficiency dependence, and linear dependence on pT

$$\varepsilon(\varphi, p_{\perp}) = \varepsilon_0 (1 - ap_{\perp}) \left[1 + \sum_{n=1}^{12} \varepsilon_i \cos(n\varphi) \right] \qquad \varepsilon_0 = 0.8, \text{ a } = 0.05$$

$$\varepsilon_0 = 0.8$$
, a = 0.05

Efficiency = 100%

Efficiency = 80%

Difference

Statistical error = 0.001, difference = 0.0005 => Robust Observable if efficiency has small dependence on pt. In practice, a measurement 'near' detection threshold in pt, implies the observable is not perfectly robust (Simulation in progress)

